630. The Rates of Reaction of $\alpha \alpha$-Diphenyl- β-picrylhydrazyl with Certain Amines and Phenols.

Abstract

By J. C. McGowan, T. Powell, and R. Raw. The reactions of primary arylamines with $\alpha \alpha$-diphenyl- β-picrylhydrazyl in carbon tetrachloride have been found to obey the third-order law:

Rate of disappearance of hydrazyl $=k_{3}\left[\right.$ Hydrazyl] ${ }^{[}$[Aniline] A number of other amines and phenols gave a second-order reaction with the hydrazyl. Alcohols and t-butylamine did not, however, react at an appreciable rate. The effects of substituents on the reaction with phenols are similar to their effects on reactions in which a carbonium ion is formed adjacent to a phenyl ring. Bulky groups ortho to the phenolic hydroxyl hinder the reaction. The reactions of p-aminobenzonitrile, m - and p-nitroaniline, p-aminobenzophenone, $N N$-dimethyl- p-nitroaniline, and m - and p-nitrophenol were greatly accelerated by light, and were then of first order with respect to $\alpha \alpha$-diphenyl- β-picrylhydrazyl and of zero order with respect to the amine or phenol.

Braude, Brook, and Linstead ${ }^{1}$ found that hydrogen transfer took place between the stable free radical $\alpha \alpha$-diphenyl- β-picrylhydrazyl and a number of quinols, catechols, hydroaromatic compounds, and aromatic amines. They measured the rates of reactions of the hydrazyl with some hydroaromatic compounds in dioxan, found that the reactions obeyed approximately the third-order law (rate $=k_{3}[\text { Hydrazyl }]^{2}$ [Donor]), and showed that the energies of activation were between 20 and 35 kcal . per mole. Russell ${ }^{2}$ studied the reactions between $\alpha \alpha$-diphenyl- β-picrylhydrazyl and alkanethiols in benzene and found that the rates of disappearance of the hydrazyl could be expressed as $2 k[\mathrm{Hydrazyl}][\mathrm{Thiol}]$. At 60°, the values of k varied from 0.231 . mole ${ }^{-1} \mathrm{~min} .^{-1}$ for t-butanethiol to 4.56 for hexane1 -thiol and the activation energy was in èvery case about 15 kcal . per mole. The products of the reactions of thiophenol, butanethiol, ammonia, hydrazine, hydroxylamine, methylamine, n-butylamine, isopropylamine, and diethylamine with $\alpha \alpha$-diphenyl- β-picrylhydrazyl were investigated ${ }^{3}$ and in every case high yields of $\alpha \alpha$-diphenyl- β-picrylhydrazine were obtained. The reactions between $\alpha \alpha$-diphenyl- β-picrylhydrazyl and some aromatic secondary amines have also been studied. ${ }^{4,5}$

Homolytic transfers of hydrogen atoms from donors to free radicals are of considerable interest in connexion with termination and transfer processes in chain reactions involving radicals. Autoxidations are important examples of such reactions. The propagation reactions are

$$
\begin{aligned}
\mathrm{R} \cdot+\mathrm{O}_{2} & \longrightarrow \mathrm{RO}_{2} \cdot \\
\mathrm{RO}_{2} \cdot & +\mathrm{RH}
\end{aligned}>\mathrm{R} \cdot \mathrm{O} \cdot \mathrm{OH}+\mathrm{R} \cdot \text {. }
$$

The termination reaction brought about by a hydrogen donor AH is usually considered to be $\mathrm{RO}_{2} \cdot+\mathrm{AH} \longrightarrow \mathrm{R} \cdot \mathrm{O} \cdot \mathrm{OH}+\mathrm{A} \cdot$ Hammond, Sen, and Boozer, ${ }^{6}$ however, consider that this mechanism is incorrect. They found that with N-methylaniline and with phenol as inhibitors the initial oxidation rates for cumene and tetralin catalyzed by azodi-isobutyronitrile were inversely proportional to the square roots of the inhibitor concentrations, i.e., the rate of termination was proportional to [Alkylperoxy-radical] ${ }^{2}$ [Inhibitor]. The reaction therefore resembles the third-order reactions ${ }^{1}$ of $\alpha \alpha$-diphenyl- β-picrylhydrazyl with hydroaromatic compounds. Moreover, no kinetic isotope effect was found when N-deutero- N-methylaniline and -diphenylamine were compared with the undeuterated

[^0]
3104 McGowan, Powell, and Raw: The Rates of Reaction of

amines. Hammond, Sen, and Boozer suggest that the alkylperoxy-radicals react reversibly with the inhibitor to give a complex which is then destroyed in an irreversible reaction with a second alkylperoxy-radical. Bickel and Kooyman ${ }^{7}$ consider that the usual mechanism is adequate to explain the inhibition of the autoxidation of dihydroanthracene by $2,4,6$-trialkylphenols. They ${ }^{8}$ treated 4 -methyl-2,6-di-t-butylphenol with $\alpha \alpha$-diphenyl- β picrylhydrazyl in toluene and found the reaction was of second order: $k=4.7$ and 6.3 1. $\mathrm{mole}^{-1} \mathrm{~min} .^{-1}$ at 20° and 30°, respectively. Some reactions of radicals with hydrogen donors appear to be of second order whilst others are of third order. It is not clear what factors determine the order or the rates of the reactions. $\alpha \alpha$-Diphenyl- β-picrylhydrazyl is a very convenient radical and since a further study of its reactions with amines and phenols appeared to be worthwhile, the work described below was carried out.

Experimental

$\alpha \alpha$-Diphenyl- β-picrylhydrazyl, prepared as by Poirier, Kahler, and Benington, ${ }^{9}$ was dissolved in carbon tetrachloride. The solution was placed in a three-necked litre flask fitted with a reflux condenser, and carbon dioxide bubbled through it. The flask was placed in a thermostat and when the solution had reached the bath-temperature a weighed quantity of the purified amine or phenol was introduced either alone or in a small amount of carbon tetrachloride, the mixture made up to volume, and the reaction carried out under carbon dioxide. Samples were taken out at intervals and the optical density was measured as quickly as possible in an EEL absorptiometer with Filter No. 604. The concentrations (moles per 1.) of $\alpha \alpha$-diphenyl- β picrylhydrazyl were found by multiplication of the optical densities for a 1 cm . thick cell by 8.58×10^{-5}. For the slowest reactions, cells 0.5 cm . thick were used, and, for fast reactions, cells 4 cm . or 10 cm . thick. The products were always somewhat coloured and the absorptiometer reading was corrected for this. The reaction was run practically to completion and the colour corresponding to total conversion into the product was obtained. It was then assumed that the same coloured products were produced throughout the reaction in proportion to the amount of $\alpha \alpha$-diphenyl- β-picrylhydrazyl which had disappeared. Details of two typical runs, one of third order and the other of second order, are given below. $D_{\text {obs. }}$ and $D_{\text {corr. }}$ are the observed and the corrected optical density, the latter being proportional to ($a-x$), the hydrazyl concentration; $k_{2}=x / t(a-x)$, and $k_{1}=(1 / t) \log _{e} a /(a-x)$.
m -Toluidine ($4.900 \times 10^{-3} \mathrm{~mol}$. per l.) in carbon tetrachloride at 40.8° (Cell 4 cm . thick.)

$\begin{gathered} \text { Time } \\ \text { (min.) } \end{gathered}$	$D_{\text {obs }}$.	$D_{\text {corrr }}$.	$10^{2} k_{2}$	Time (min.)	$D_{\text {obs }}$	$D_{\text {corrr }}$.	$10^{2} k_{2}$	$\begin{aligned} & \text { Time } \\ & \text { (min.) } \end{aligned}$	$D_{\text {obs. }}$	$D_{\text {corr }}$.	$10^{2} k_{2}$
0	0.96	0.96	-	55	$0 \cdot 69$	$0 \cdot 62$	1.00	210	$0 \cdot 44$	$0 \cdot 30$	1.05
15	0.86	0.83	1.04	75	0.63	0.54	1.04	385	0.35	$0 \cdot 19$	1.05
25	0.80	0.76	1.05	95	0.59	$0 \cdot 49$	1.01	1200	$0 \cdot 20$	0	
35	$0 \cdot 76$	0.71	1.01	115	0.55	$0 \cdot 44$	1.03		ge :	$=1$	10^{-2}
$k_{3} \text { for third-order reaction }=\frac{x}{(a-x) t} \times \frac{1}{a[m \text {-Toluidine }]}$											
				$\begin{aligned} & =1 \\ & =1 \end{aligned}$	$\begin{aligned} & \times 10 \\ & \times 10 \end{aligned}$	$\begin{aligned} & 2 \times \overline{4 \cdot} \\ & 1 . .^{2} \mathrm{mo} \end{aligned}$	$\begin{aligned} & 00 \times \\ & \mathrm{e}^{-2} \mathrm{mi} \end{aligned}$	$\times 8$	$\times 10$	$\times 0$	

2,4-Dimethyl-6-2'-methylcyclohexylphenol $\left(4.767 \times 10^{-5} \mathrm{~mol}\right.$. per l.) at $20 \cdot 0^{\circ}$ in carbon tetrachloride. The cell used was 4 cm . thick. Results are in Table 1.

$$
\begin{aligned}
k \text { for second-order reaction } & =\frac{1}{t} \log _{\mathrm{e}} \frac{a}{a-x} \times \frac{1}{[\text { Phenol }]} \\
& =2.35 \times 10^{-2} \times \frac{1}{4 \cdot 767 \times 10^{-5}} \\
& =493 \mathrm{l} . \mathrm{mole}^{-1} \mathrm{~min}^{-\mathrm{i}}
\end{aligned}
$$

[^1]In Table 2 are given the results of experiments in which primary aromatic amines reacted with $\alpha \alpha$-diphenyl- β-picrylhydrazyl in carbon tetrachloride solutions. The reactions are all calculated as third order, i.e.:

$$
\text { Rate of disappearance of hydrazyl }=k_{3}[\text { Hydrazy }]^{2}[\text { Amine }]
$$

All the reactions were found to be of the second order with respect to hydrazyl. In a number of cases, different concentrations of amine were used and the reaction was found to be of the first order with respect to the amine: for example, at 41.0° with p-chloroaniline at 1.570×10^{-2} and 7.85×10^{-3} mole per l., the values of k_{3} were 1.83×10^{4} and $1.87 \times 10^{4} 1 .{ }^{2} \mathrm{~mole}^{-2} \mathrm{~min} .^{-1}$.

Table 1.

$\begin{gathered} \text { Time } \\ \text { (min.) } \end{gathered}$	$D_{\text {obs }}$	Corr. D proportional to hydrazyl concn. ($a-x$)	$\frac{10^{2}}{t} \log _{\mathrm{e}} \frac{a}{a-x}$	$\begin{aligned} & \text { Time } \\ & (\text { min. }) \end{aligned}$	$D_{\text {obs }}$	Corr. D proportional to hydrazyl concn. $(a-x)$	$\frac{10^{2}}{t} \log _{\mathrm{e}} \frac{a}{a-x}$
0	0.85	0.85 (propl. to a)		36	$0 \cdot 40$	0.37	$2 \cdot 30$
5	0.76	0.755	2.37	41	0.35	$0 \cdot 32$	$2 \cdot 38$
10	0.68	$0 \cdot 67$	$2 \cdot 38$	46	0.32	$0 \cdot 29$	2.34
15	$0 \cdot 61$	0.595	$2 \cdot 38$	56	$0 \cdot 26$	$0 \cdot 22$	$2 \cdot 39$
21	0.54	$0 \cdot 52$	$2 \cdot 34$	116	$0 \cdot 10$	0.053	$2 \cdot 39$
26	0.48	0.455	$2 \cdot 40$	600	0.05	0 -	
31	$0 \cdot 44$	$0 \cdot 415$	$2 \cdot 31$			Avera	$\mathrm{ge}=2 \cdot 35$

Table 2. Reactions of $\alpha \alpha$-diphenyl- β-picrylhydrazyl with primary aromatic amines.*

Amine	Temp. (${ }^{\circ} \mathrm{K}$)	k_{3}	$\boldsymbol{R} T \log _{e} k_{3}$	$14 Q$ for Ph group ${ }^{10}$
$m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl} \cdot \mathrm{NH}_{2}$	$292 \cdot 1$	4.72×10^{2}	$3 \cdot 53$	8.0
	314-1	5.70×10^{3}	5.36	$8 \cdot 0$
	$333 \cdot 1$	9.91×10^{4}	$7 \cdot 58$	$8 \cdot 0$
	$351 \cdot 1$	2.38×10^{5}	$8 \cdot 61$	$8 \cdot 0$
$m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br} \cdot \mathrm{NH}_{2}$	$292 \cdot 6$	5.37×10^{2}	$3 \cdot 64$	$7 \cdot 8$
	314.1	2.82×10^{3}	$4 \cdot 92$	$7 \cdot 8$
	$332 \cdot 1$	7.74×10^{4}	$7 \cdot 40$	$7 \cdot 8$
	351.1	2.32×10^{5}	$8 \cdot 59$	$7 \cdot 8$
$p \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl} \cdot \mathrm{NH}_{2}$	$294 \cdot 6$	2.34×10^{3}	$4 \cdot 50$	$7 \cdot 4$
	$314 \cdot 1$	1.85×10^{4}	$6 \cdot 09$	$7 \cdot 4$
	$332 \cdot 1$	2.72×10^{5}	$8 \cdot 23$	$7 \cdot 4$
	$351 \cdot 1$	1.23×10^{6}	$9 \cdot 76$	$7 \cdot 4$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NH}_{2}$	$273 \cdot 1$	1.43×10^{3}	3.90	$6 \cdot 6$
	$294 \cdot 1$	5.91×10^{3}	$5 \cdot 03$	$6 \cdot 6$
	$314 \cdot 1$	6.10×10^{4}	6.84	$6 \cdot 6$
	$332 \cdot 3$	3.18×10^{5}	$8 \cdot 33$	$6 \cdot 6$
$m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me} \cdot \mathrm{NH}_{2}$	$273 \cdot 1$	2.40×10^{3}	$4 \cdot 18$	$6 \cdot 3$
	$293 \cdot 1$	1.51×10^{4}	$5 \cdot 56$	$6 \cdot 3$
	313.9	1.01×10^{5}	$7 \cdot 14$	$6 \cdot 3$
$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me} \cdot \mathrm{NH}_{2}$	$273 \cdot 1$	5.51×10^{3}	$4 \cdot 64$	$6 \cdot 2$
	$293 \cdot 1$	3.70×10^{4}	6.02	$6 \cdot 2$
	$314 \cdot 1$	2.92×10^{5}	$7 \cdot 82$	$6 \cdot 2$

Table 3. Reactions of $\alpha \alpha$-diphenyl- β-picrylhydrazyl with amines.

Amine		Temp.	k (1. mole ${ }^{-1}$ min. ${ }^{-1}$)	Amine	Temp.	$k\left(1 . \mathrm{mole}^{-1} \mathrm{~min} .^{-1}\right)$
t-Butylamine	..	76°	<0.0001	Morpholine	77°	1.33
n-Butylamine		77	0.90	N-Methylpyrrolidine	76	$4 \cdot 33$
Triethylamine		40	$0 \cdot 48$	Dimethylaniline	40	$2 \cdot 31$
		58	0.80		77	$5 \cdot 25$
		77	1.62			

In chloroform k for n-butylamine was 0.12 at 20° and 0.37 at 62°.
p-Nitroaniline, m-nitroaniline, p-aminobenzonitrile, and p-aminobenzophenone were found to react with $\alpha \alpha$-diphenyl- β-picrylhydrazyl only very slowly in the dark but in the light beam of the EEL absorptiometer the reactions all proceeded quite readily. In the light, the reactions were of the first order with respect to $\alpha \alpha$-diphenyl- β-picrylhydrazyl and of zero order with respect to the amine. The reactions of $N N$-dimethyl p-nitroaniline and m - and p-nitrophenol with $\alpha \alpha$-diphenyl- β-picrylhydrazyl were also very slow in the dark and comparatively fast in the light.

10 McGowan, J. Soc. Chem. Ind., 1949, 68, 253.

In Table 3 are given results of experiments in which some other amines reacted with $\alpha \alpha$-di-phenyl- β-picrylhydrazyl in carbon tetrachloride. The reactions were all found to be of the first order with respect to the hydrazyl. In the case of morpholine at 77°, the reaction was shown to be of the first order with respect to the amine (k was $1 \cdot 36$ at $2 \cdot 10 \times 10^{-2}$ mole per 1 . and 1.30 at 8.06×10^{-2} mole per 1 . of morpholine) and the reactions were assumed to be of the first order with respect to the other amines so that

$$
\text { Rate of disappearance of hydrazyl }=k[\text { Hydrazy }][\text { Amine }]
$$

The activation energies for these reactions are about 5 kcal. per mole.
Table 4. Rate constants, k, for the bimolecular reactions of phenols with $\alpha \alpha$-diphenyl- β picrylhydrazyl in carbon tetrachloride at about 20° compared with various measures of antioxidant activity and of steric hindrance.

	1	2	3	4	5	6	7
No phenol	-	-	45	-	0	-	
Phenols with a free ortho-position							
4-Chlorophenol	$1 \cdot 1\left(19 \cdot 0^{\circ}\right)$		45				
Phenol	$4 \cdot 3$ (19.6 ${ }^{\circ}$)	83	75	0.92	0	1.0	$0 \cdot 25$
3,5-Dimethylphenol	$46\left(20^{\circ}\right)$	545	-	0.86	25	$0 \cdot 8$	
2-Methylphenol	47 ($19.5{ }^{\circ}$)	522	135	0.85	15	0.7	
4-Methylphenol	$55\left(19 \cdot 0^{\circ}\right)$	291	210	$0 \cdot 84$	-	$1 \cdot 4$	0.28
4-(1,1,3,3-Tetramethylbutyl)phenol	76 (18.3 ${ }^{\circ}$)			-	-	1.0	$0 \cdot 27$
4-t-Butylphenol	$83\left(20 \cdot 0^{\circ}\right)$	464	210	$0 \cdot 84$	-	0.9	$0 \cdot 20$
2,3-Dimethylphenol	100 (18.0 0°)	591	-	0.85	25	$1 \cdot 0$	-
2,5-Dimethylphenol	106 (17.6 ${ }^{\circ}$)		285	0.82	25	1.0	
β-Naphthol	377 (19.0 ${ }^{\circ}$)	830	330	0.70			
2,4-Di-t-butylphenol	520 (18.0 ${ }^{\circ}$)	1430	-	0.76	-	1.2	
2,4-Dimethylphenol	789 (18.4 ${ }^{\circ}$)	1310	420	0.76	50	$0 \cdot 8$	$0 \cdot 19$
4-Benzyloxyphenol	7000 (18.0 ${ }^{\circ}$)	1710	-	0.71	80	-	
α-Naphthol	8000 (15.55°)	3950	2250	$0 \cdot 68$	150	-	
4-Methoxyphenol	14,000 (21.0 ${ }^{\circ}$)	-	-	0.71	85	-	$0 \cdot 24$
4-Methoxy-3-t-butylphenol	$\sim 20,000\left(20 \cdot 8^{\circ}\right)$	-	-	$0 \cdot 64$	150	-	
4-Methoxy-2-(1,1,3,3-tetramethylbutyl)phenol	$\sim 40,000$ (19.5°)	-	-	$0 \cdot 64$	295		
4-Methoxy-2,5-di-t-butylphenol	$\sim 60,000$ (16.0 ${ }^{\circ}$)	-	-	$0 \cdot 63$	160	-	
4-t-Butylcatechol	$>100,000\left(18 \cdot 6{ }^{\circ}\right)$	-	-	-	-	-	-
4-Methylcatechol	$>100,000\left(18 \cdot 0^{\circ}\right)$	-	-	-	-	-	
2,6-Dimethylphenols							
2,6-Dimethylphenol	117 (19.0 ${ }^{\circ}$)	1110	420	0.76	30	$2 \cdot 3$	0.09
2,4,6-Trimethylphenol	1350 (20.1 ${ }^{\circ}$)	2070	-	0.67	100	$3 \cdot 6$	0.08
2-Methylphenols with a bulky group in 6position							
2,4-Dimethyl-6-t-butylphenol	323 (18.5 ${ }^{\circ}$)	3320	-	0.65	125	15.0	0.04
2,4-Dimethyl-6-(1,1,3,3-tetramethylbutyl)phenol	$350\left(19 \cdot 0^{\circ}\right)$	-	-	$0 \cdot 66$	145	$13 \cdot 8$	0.03
2,4-Dimethyl-6-2'-methylcyclohexylphenol	466 (19.3 ${ }^{\circ}$)	-	-	-	-	$10 \cdot 4$	
Phenols with bulky groups in both 2-and 6-positions							
2,4,6-Tri-t-butylphenol	22 (19.2 ${ }^{\circ}$)	1430	-	$0 \cdot 69$	85	220	0.003
4-Methyl-2,6-di-t-butylphenol	$31\left(18 \cdot 3^{\circ}\right)$	1990	-	$0 \cdot 68$	70	156	0.008
4-Ethyl-2,6-di-t-butylphenol	$32\left(17 \cdot 0^{\circ}\right)$	-	-	0.72	105	151	

In Table 4 are given results of experiments in which phenols were treated with $\alpha \alpha$-diphenyl-β-picrylhydrazyl in carbon tetrachloride. The rate constants (average) for the bimolecular reactions are given in col. 1. These reactions were carried out at two phenol concentrations, one approximately four times the other, and the values of k were always in good agreement.

In col. 2 are shown the relative rates calculated ${ }^{11}$ for the capture of tetralyl peroxide radicals at 50° by the phenols. In col. 3 are induction periods found ${ }^{12}$ for the oxidation of gasoline containing 0.01% of phenol, in oxygen under pressure at 100°. Col. 4 gives the
${ }^{11}$ Davies, Goldsmith, Gupta, and Lester, J., 1956, 4926.
12 Egloff, Morrell, Lowry, and Dryer, Ind. Eng. Chem., 1932, 24, 1375.
relative oxidation potentials of phenols in 50% alcohol extrapolated to zero $\mathrm{pH} .{ }^{13}$ Col. 5 gives figures from Penketh ${ }^{13}$ for the increase in induction period caused by the addition of $10^{-5} \mathrm{M}$ phenol to fully saturated petrol in the A.S.T.M. bomb test (D $525-49$). In col. 6 are the values (see p. 3110) of k (calc.)/ k (obs.) for alkyl-phenols, and in col. 7 the differences in wavelength (microns) of the $\mathrm{O}-\mathrm{H}$ infrared absorption between a dilute solution in carbon tetrachloride and a concentrated solution or melt. ${ }^{14}$

The reactions of some phenols with $\alpha \alpha$-diphenyl- β-picrylhydrazyl were studied in carbon tetrachloride at temperatures other than around 20° and in other solvents. The results are listed in Table 5 and show that the activation energies are between 5 and 10 kcal. per mole.

Table 5. Further rate constants (k in l. mole ${ }^{-1} \min ^{-1}$) for the bimolecular reactions of phenols with $\alpha \alpha$-diphenyl- β-picrylhydrazyl.

p-Cresol $\begin{aligned} & \text { Phenol } \\ & \text {......... }\end{aligned}$	Temp.	Solvent	k	Phenol	Temp.	Solvent	k
	2°	CCl_{4}	23	2,4,6-Tri-t-butylphenol	1°	CCl_{4}	9
	39	,	166		40	,'	46
	77		1015		77	,"	210
	3	CHCl_{3}	$7 \cdot 6$	4-Methyl-2,6-di-t-butyl-			
	$18 \cdot 3$,,	19	phenol	1		18
	31	,"	45		$19 \cdot 6$	PhMe	17
2,4-Dimethyl-6-2'-methylcyclohexylphenol	0	CCl_{4}	263		32	",	26

Toluene, sulphur, phthalimide, triphenylmethane, methanol, ethanol, and propan-2-ol did not react at an appreciable rate with $\alpha \alpha$-diphenyl- β-picrylhydrazyl in carbon tetrachloride at 77°.

Discussion

The effects of charged atoms on the free energies of ionization $\left(\Delta G_{0}=-\boldsymbol{R} T \log _{\mathrm{e}} K\right)$ of protons in acidic molecules and on the free energies of other reactions involving transfers of electrical charges have been discussed elsewhere. ${ }^{15}$ Phenyl and other groupings give effects resembling those of charges and each grouping may be allotted an "effective charge " (Q) which may be defined as the hypothetical charge which would be required to give the same effect as the grouping (Y). The following relation may be written for the effect upon a given equilibrium of substitution of different groupings (Y) for hydrogen:

$$
\Delta G^{\circ}=-\boldsymbol{R} T \log _{\mathrm{e}} K=\Delta G_{\mathrm{H}}^{\circ}+B Q
$$

where $\Delta G_{\mathrm{H}}{ }^{\circ}$ is the value of ΔG° when Y is hydrogen; and B may be equated with $14 / 2^{n}$, where n depends on the structure separating the group Y from the atom involved in the change of charge. In the case of the ionization of a proton, it equals the number of atoms between Y and the dissociating proton if all these atoms are saturated, so that with dilute aqueous solutions at 25°
for

$$
\mathrm{YOH} \rightarrow \mathrm{YO}^{-}+\mathrm{H}^{+} \quad \Delta G^{\circ}=19 \cdot 9-14 Q
$$

$$
\text { and for } \quad \mathrm{Y} \cdot \mathrm{NH}_{3}^{+} \longrightarrow \mathrm{Y} \cdot \mathrm{NH}_{2}+\mathrm{H}^{+} \quad \Delta G^{\circ}=12 \cdot 9-14 Q
$$

The treatment is not confined to 25° and can be applied to other media besides water and for the reactions
and

$$
\begin{gathered}
\mathrm{YO} \cdot+\mathrm{e} \longrightarrow \mathrm{YO}^{-} \\
\mathrm{Y} \cdot \mathrm{NH}_{2}^{+}+\mathrm{e} \longrightarrow \mathrm{Y} \cdot \mathrm{NH}_{2}
\end{gathered}
$$

one would expect $\Delta G^{\circ}=\Delta G_{H}{ }^{\circ}-14 Q$.
The effect of groupings and charges upon velocity constants (k) has been found to be similar to the effects upon equilibria, and $\boldsymbol{R} T \log _{\mathrm{e}} k+B Q$ values are constant for

[^2]reactions which all involve the same change of charge. The values of Q for substituted phenyl groups listed previously ${ }^{\mathbf{1 0}}$ are used here. The equation involving B and Q links reactions in the aromatic series with those in the aliphatic series and indicates the changes in charges more directly than does the well-known equation of Hammett. ${ }^{16}$

The reactions of substituted anilines with $\alpha \alpha$-diphenyl- β-picrylhydrazyl in carbon tetrachloride have been found to obey the third-order law:

$$
\text { Rate of disappearance of hydrazyl }=k_{3}[\text { Hydrazyl }]^{2}[\text { Aniline }]
$$

and $\boldsymbol{R} T \log _{\mathrm{e}} k_{3}+14 Q$ is a constant for all the anilines at any one temperature. Now if k_{3}

Fig. 2. Relative oxidation potentials and $\log _{10} k$ values for phenols.

1, 2,6-Dimethylphenol. 2, 2,4,6-Trimethylphenol. 3, 4,6-Dimethyl-1-tbutylphenol. 4, 2,4-Dimethyl-6-(1,1,3,3-tetramethylbutyl)phenol. 5, 2,4,6-Tri-t-butylphenol. 6, 4-Methyl-2,6-di-t-butylphenol. 7, 4-Ethyl-2,6-di-t-butylphenol.
is equal to $A \mathrm{e}^{-E} / \boldsymbol{R} T ; \boldsymbol{R} T \log _{\mathrm{e}} k_{3}=\boldsymbol{R} T \log _{\mathrm{e}} A-E$ for any one aniline at any temperature; and $\boldsymbol{R} T \log _{\mathrm{e}} k_{3}+14 Q-\boldsymbol{R} T \log _{\mathrm{e}} A=\mathrm{a}$ constant for all anilines at all temperatures. In Fig. 1, values of $\boldsymbol{R} T \log _{\mathrm{e}} k_{3}+\mathbf{1 4 Q}$ are plotted against T and it will be seen that the points fall close to the straight line which corresponds to

$$
\boldsymbol{R} T \log _{\mathrm{e}} k_{3}+14 Q=0.075 T-9 \cdot 8 \mathrm{kcal} . \mathrm{mole}^{-1}
$$

From this $\log _{10} A=16.41 .{ }^{2} \mathrm{~mole}^{-2} \mathrm{~min} .^{-1}$ and $E=9 \cdot 8+14 Q$ kcal. mole ${ }^{-1}$.
Since $\boldsymbol{R} T \log _{\mathrm{e}} k_{3}$ is a constant for the reactions of $\alpha \alpha$-diphenyl- β-picrylhydrazyl with anilines under a given set of conditions, the nitrogen atom of the aniline seems to acquire a positive charge in the step of the reaction which controls the rate. Braude, Brook, and Linstead ${ }^{1}$ who found that rates of reactions of $\alpha \alpha$-diphenyl- β-picrylhydrazyl with hydroaromatic compounds obeyed a third-order law, concluded that the reaction involves the reversible association of two of the reacting species followed by attack on this intermediate
${ }^{18}$ Hammett, J. Amer. Chem. Soc., 1937, 59, 96: " Physical Organic Chemistry," McGraw-Hill Book Co., New York 1940, Chap. 7.
by a third component. For the aromatic primary amines the transfer of an electron from the amine to the hydrazyl, in the way suggested by Hammond, Sen, and Boozer, ${ }^{6}$ seems the most likely mode of association.

$$
\text { Hydrazyl }+\mathrm{Ar} \cdot \mathrm{NH}_{2} \rightleftarrows[\text { Hydrazine anion }]\left[\mathrm{Ar} \cdot \mathrm{NH}_{2}{ }^{+}\right]
$$

The aromatic primary amines give a third-order reaction with $\alpha \alpha$-diphenyl- β-picrylhydrazyl, but other amines give a second-order reaction. The second-order rate constants reported by Hazell and Russell ${ }^{4}$ for 20° in benzene and estimated for 77° by extrapolation of their figures are given below:

These rates are faster than those shown in Table 3. Hazell and Russell ${ }^{4}$ found that $\alpha \alpha$-di-phenyl- β-picrylhydrazine was always a major product in their reactions; that tetraphenylhydrazine was formed in 40% yield from diphenylamine; and that triphenylamine did not react at an appreciable rate with $\alpha \alpha$-diphenyl- β-picrylhydrazyl. It is therefore likely that $\alpha \alpha$-diphenyl- β-picrylhydrazyl removes a hydrogen atom off the nitrogen in the diarylamines. The results of other workers ${ }^{5}$ support this view, although it has been reported ${ }^{6}$ that there was no kinetic isotope effect when N-deutero- N-methylaniline and -diphenylamine were compared with the undeuterated amines. t-Butylamine gives no appreciable reaction with $\alpha \alpha$-diphenyl- β-picrylhydrazyl and a hydrogen on the α-carbon atom appears to be necessary in aliphatic amines for reaction (see Table 3).

The relative rates ${ }^{17}$ (the ratios of the rates for substituted to unsubstituted compound k / k_{0}) of solvolysis of substituted $\alpha \alpha$-dimethylbenzyl chlorides in 90% aqueous acetone at 25° are compared below with rates of reaction of the corresponding substituted phenols with $\alpha \alpha$-diphenyl- β-picrylhydrazyl in carbon tetrachloride at about 20°. The similarity between the figures suggests that the stages which control the rates in the two reactions are very closely related : ${ }^{15}$

Substituent	Relative rates k / k_{0}	
	Reaction of phenols with $\alpha \alpha$-diphenyl- β-picrylhydrazyl	Solvolysis of dimethylbenzyl chlorides
p-Methoxy	3300	3360
p-Methyl	13	26
p-t-Butyl	19	14
p-Chloro .	$0 \cdot 26$	$0 \cdot 31$

The stage which controls the rate in the solvolysis of the $\alpha \alpha$-dimethylbenzyl chlorides almost certainly involves the formation of the carbonium ion (I), and so the stage wlich controls the rate in the reactions of phenols with $\alpha \alpha$-diphenyl- β-picrylhydrazyl seems to involve the removal of a hydride ion from the phenolic oxygen atom with the formation of an ion (II) with a positive charge. The second electron may be taken up by one of the nitro-groups of the hydrazyl.
(1)

(II)

The introduction of alkyl groups into phenols brings about a big increase in their efficiency as antioxidants. ${ }^{18}$ It is therefore of interest that the substitution of alkyl groups in phenols greatly increases the rate of reaction with $\alpha \alpha$-diphenyl- β-picrylhydrazyl. The

[^3]substitution of any alkyl group in the para-position increases the rate about 18 times. Each alkyl group in the meta-position increases k about three times, and when there is little if any steric hindrance an alkyl group in an ortho-position increases k about eight times. Calculated values of k were obtained by multiplication of $4 \cdot 2$ by these factors. There was fair agreement between the observed and the calculated k values provided one ortho-position of the phenol is unsubstituted, so that for such phenols the ratio of calculated to observed value of k is near unity (Table 4, col. 6). When there are alkyl groups in the 2 - and the 6 -position, the value of k found for the reaction of the phenol with $\alpha \alpha$-diphenyl-β-picrylhydrazyl is less than the value calculated as described above. The ratio of calculated to observed value of k is about three when 2,6-methyl groups are present. This ratio rises to about 15 when there is a 2 -methyl group and a bulky alkyl group in the 6 -position, and becomes over a hundred when there are bulky groups in both the 2 - and the 6 -position. It has been found ${ }^{19}$ that the smaller the difference between the OH infrared absorption bands (at about 2.7μ) in a dilute solution and a concentrated solution or melt, the greater the steric hindrance, and figures ${ }^{14}$ are given in col. 7 of Table 4 for differences in these wavelengths.

A direct measure of the oxidation-reduction potential of simple phenols is not possible, but indirect measures of the relative oxidation-reduction potentials of phenols have been made. ${ }^{20}$ Penketh's results ${ }^{13}$ (col. 4, Table 4) for relative oxidation potentials (E_{c}) at zero pH are plotted against values of $\log _{10} k$ for the reactions of $\alpha \alpha$-diphenyl- β-picrylhydrazyl with phenols in Fig. 2. The points for phenols with one or no ortho-substituents are marked \times and the methoxyphenols have been included. These points fall close to the straight line. If the potentials and k values were derived from closely related reactions, $-\boldsymbol{R} T \log _{\mathrm{e}} k$ would be expected to equal ($23 \cdot 053 E_{\mathrm{c}}+\mathrm{a}$ constant) kcal. per mole. This relation would give $(23 \cdot 053 / 2 \cdot 3026) \boldsymbol{R} T$ for the slope of the $\log _{10} k$ against E_{c} plot and the line in Fig. 2 has been drawn with this slope. The high values of k are only approximate and Penketh claims only an accuracy of $\pm 0.03 \mathrm{v}$, so that the agreement between the points and the line is as good as could be expected. The points for phenols with two ortho groups are marked \odot in Fig. 2 and all fall below the line, and the bulkier the groups in the orthopositions the farther below the line do the points fall. Penketh ${ }^{13}$ has discussed the relations between his potentials and various other measures of antioxidant activity, so that further discussion here appears to be unnecessary.

The authors thank Dr. H. Clough and Dr. R. W. G. Preston for samples of nineteen of the phenols.

Imperial Chemical Industries Limited,
Research Department, Black Fan Road, Welwyn Garden City, Herts.
[Received, February 16th, 1959.]
${ }^{19}$ Coggeshall, J. Amer. Chem. Soc., 1947, 69, 1620.
${ }^{20}$ Conant, ibid., 1926, 48, 3220; Fieser, ibid., 1930, 52, 5204.

[^0]: ${ }^{1}$ Braude, Brook, and Linstead, $J ., 1954,3574$.
 ${ }^{2}$ Russell, J. Phys. Chem., 1954, 58, 438.
 ${ }^{3}$ Brook, Anderson, and Patot, Canad. J. Chem., 1958, 36, 159.
 ${ }^{4}$ Hazell and Russell, Canad. J. Chem., 1958, 36, 1729.
 ${ }^{5}$ Kuz'minskii and Angert, Doklady Akad. Nauk S.S.S.R., 1954, 96, 1187.
 ${ }^{6}$ Hammond, Sen, and Boozer, J. Amer. Chem. Soc., 1955, 77, 3239.
 5 I

[^1]: 7 Bickel and Kooyman, J., 1956, 2215; 1957, 2217.
 8 Idem, ibid., 1957, 2415.
 ${ }^{9}$ Poirier, Kahler, and Benington, J. Org. Chem., 1952, 17, 1437.

[^2]: ${ }^{13}$ Penketh, J. Appl. Chem., 1957, 7, 512.
 ${ }^{14}$ Sears and Kitchen, J. Amer. Chem. Soc., 1949, $71,4110$.
 ${ }^{15}$ McGowan, Nature, 1947, 159, 644; 1951, 168, 601; Chem. and Ind., 1948, 632; 1951, 601; and ref. 10.

[^3]: ${ }^{17}$ Brown, Brady, Grayson, and Bonner, J. Amer. Chem. Soc., 1957, 79, 1897; Brown, Okamoto, and Ham, ibid., p. 1906; Okamoto and Brown, ibid., p. 1909.
 ${ }^{18}$ Rosenwald, Hoatson, and Chenicek, Ind. Eng. Chem., 1950, 42, 162; Egloff, Morrell, Lowry, and Dryer, ref. 11.

